

PTL(Physical Tape Library)의 한계

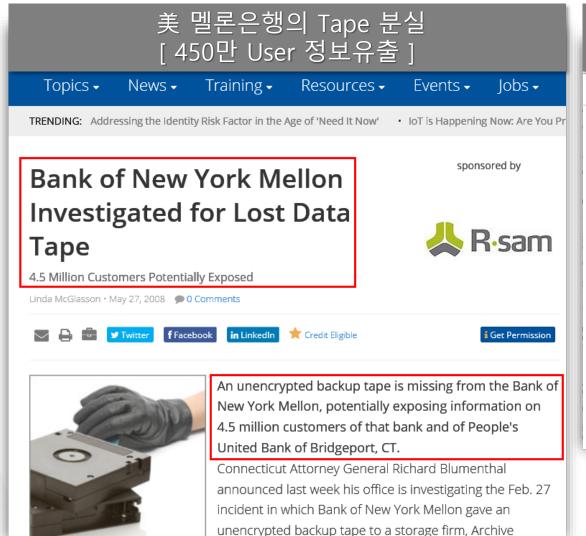
PTL 백업시 보장할 수 없는 복구 작업

- Tape Media는 사용횟수, 보관 방법 등의 영향으로 인해 복구율 저하
- •장기보관(10년 이상) 데이터는 안정성을 위해 2개 이상의 사본 저장을 권장
- 백업서버가 랜섬웨어등에 노출되어 작동 불가된 경우 테입에 저장된 Index 도 삭제되거나 Labeling되어 복구가 불가능 하거나 많은 시간 소요

복구시 Generation별 호환성에 한계

- LTO Tape Media는 일반적으로 1단계 까지의 호환성만을 제공 (예: LTO8 이상부터는 LTO7 까지 read 가능)
- 과거에 장기보관되어 있던 데이터의 복구를 위해서는 MA비용이 과도한 LTO2등의 유지가 필요

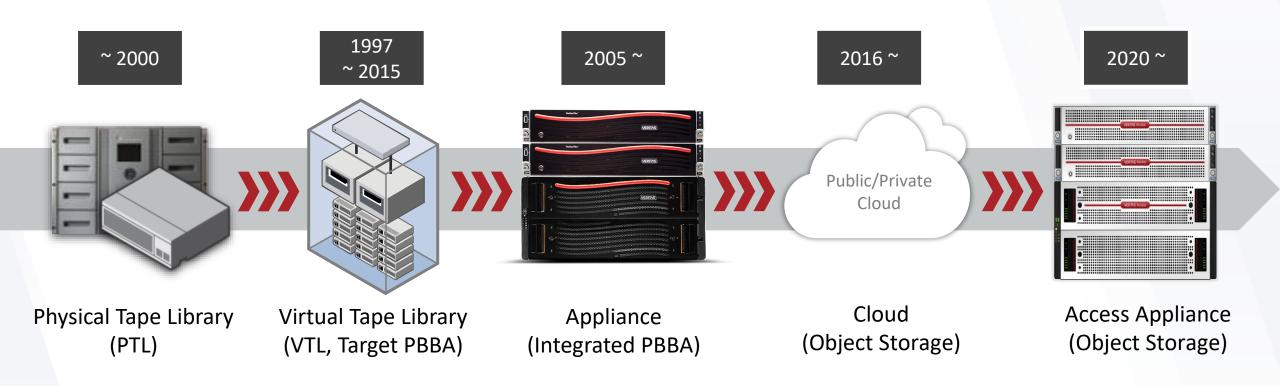
비 효율적인 데이터 저장기술


- Sequential device 구조로 인해 데이터를 기록하고 검색하는데 상당한 시간이 소요됨(RTO 개선사항 없음)
- 고속 백업 기술 미제공 (한 미디어에 병렬 백업 불가, 여러 미디어에 걸쳐 중복제거 불가) / 클라우드와 연계된 백업이 불가



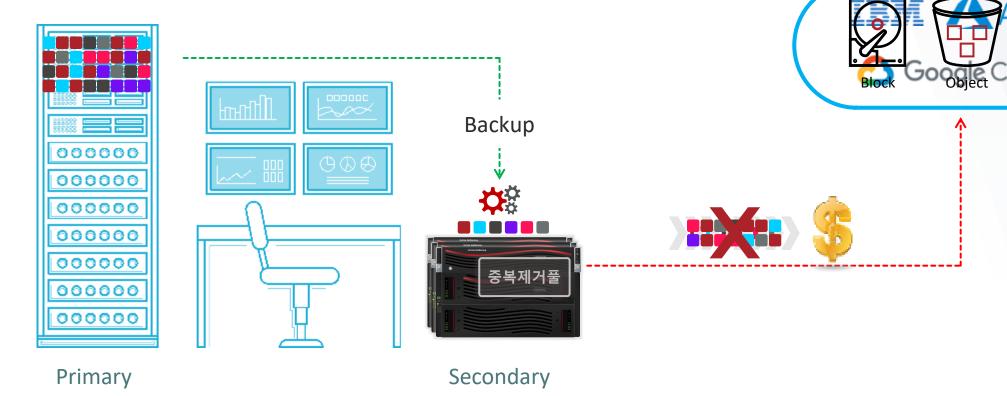
	LTO TAPE DRIVES							
TAPE FORMAT	LTO-8	LTO-7	LTO-6	LTO-5	LTO-4	LTO-3	LTO-2	LTO-1
LTO-8	RW	-	-	-	-	-	-	-
LTO-7	RW	RW	-	-	-	-	-	-
LTO-6		RW	RW	-	-	-	-	-
LTO-5	-	R	RW	RW	-	-	-	-
LTO-4	-	-	R	RW	RW	-	-	-
LTO-3	-	-	-	R	RW	RW	-	-
LTO-2	-	-	-	-	R	RW	RW	-
LTO-1	-	-	-	-	-	R	RW	RW

물리적 Tape 소산 중 분실 사례

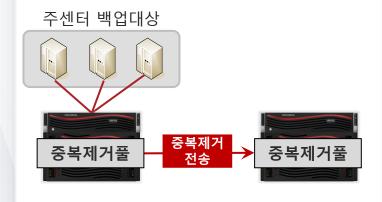


OO은행 PTL 백업 및 소산 중단 사례

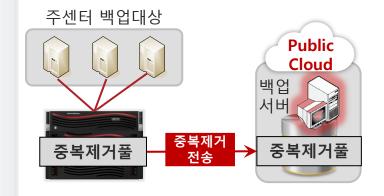
문제점	현상
소산 시간 증가	데이터량 증가에 따라 소산시간 증가 및 소산백업 SKIP 발생
빈번한 장애	불량 TAPE 증가 및 LTO 드라이브 장애로 소산 실패율 증가
데이터 신뢰성	TAPE 미디어의 특성으로 인한 장기보관에 취약
중복제거 기능 부재	1차 중복제거 장치로부터 2차 TAPE 복제 과정 중 데이터 원복에 많은 자원과 시간 소요
비용증가	물리적인 소산으로 용역비 및 지속적인 TAPE 구매로 인한 비용 증가


백업 시장 동향

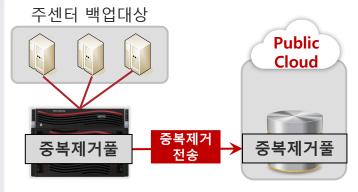
백업 시장 동향


- 내화금고를 이용한 Tape 소산보다는 Disk 저장장치를 이용한 온라인 소산 확산 Public Cloud Storage를 백업장치로 사용을 고려 하는 추세
- Public Cloud로 데이터를 보낼 때 중복 제거된 형태로 전송가능하여 회선 사용량과 Cloud내 저장 비용 절감이 반드시 가능해야 함
- 원하는 시점 어디로든 Cloud로 소산 백업이 가능해야 함

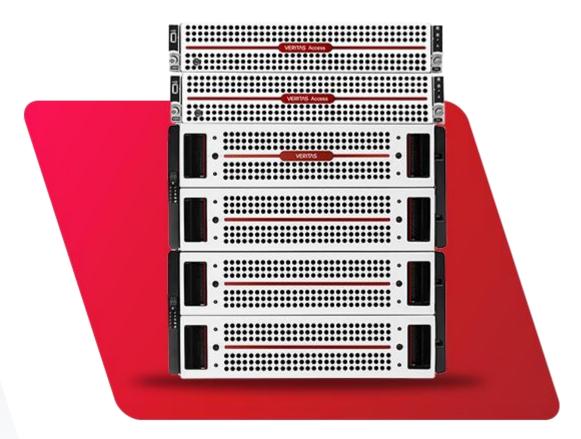
NetBackup를 통한 소산 방안


Appliance → Appliance

주센터와 DR센터 Appliance간 중복제거풀로 1차 백업된 데이터를 원격 복제 (백업서버간 중복제거 복제)


Appliance → Cloud

주센터에 있는 중복제거풀로 1차 백업된 데이터를 Cloud에 위치한 백업 서버로 원격 복제 (백업서버간 중복제거 복제)

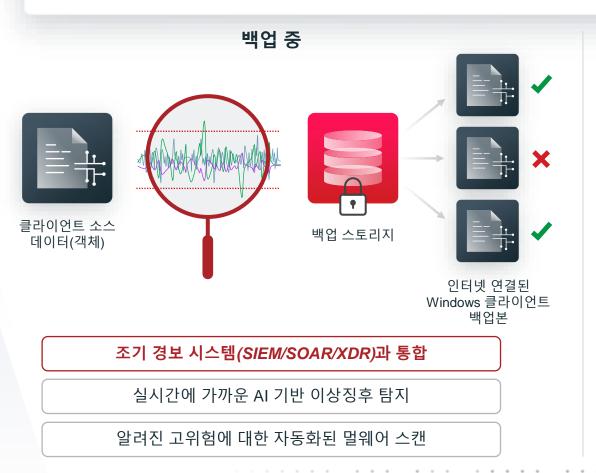

Appliance → Cloud Storage

주센터에서 백업 받은 데이터를 중복제거된 형태로 Cloud Storage에 저장 (Cloud에 백업서버 없는 중복 제거 복제)

비용 절감형, 온프레미스 장기보관 저장 개선

Veritas Access 3350 Appliance

- 장기보존 데이터를 위한 Object Storge 기반의 All-In-One Appliance
- 다량의 워크로드 처리 와 대용량의 저장공간 제공
- 장기보관(LTR) 데이터 저장, 아카이빙 솔루션, 테이프 대체(Tapeless) 용도로의 최적화된 솔루션
- 유연성, 비용절감, 확장성 제공
- NetBackup 정책 및 중복제거포맷을 유지한 상태로 원격복제 및 로컬 LTR 데이터 저장



Appliance는 Zero-trust 관점의 보안 모델이 기본 **Zero Trust 동작** (신뢰할 수 있는 코드만 액세스 가능) Zero Trust 통신 (디지털 인증서) ✓ 공격 접점 포인트 감소 침입 차단 변조 및 삭제 불가능한 스토리지 ✓ 무단 액세스 차단 시스템(IPS) ✓ 비승인 호출 실행 차단 BYO, Appliance, 클라이언트 Cloud & SaaS 소스 데이터(객체) **Zero Trust 권한** (관리자 액세스 권한 최소화)

Anomaly Detection 및 Malware Scan 기능의 통합

- NetBackup자체 기본 기능으로 별도 Vaccine S/W 연계 없이 백업, 복구 전후로 데이터의 오염여부를 판단 가능
- NetBackup Scanner 자체 탑재(Avira社 OEM), MS Defender (Windows Only), Symantec Protection과 연계 가능

규모에 따른 자동화된 클린한 복구

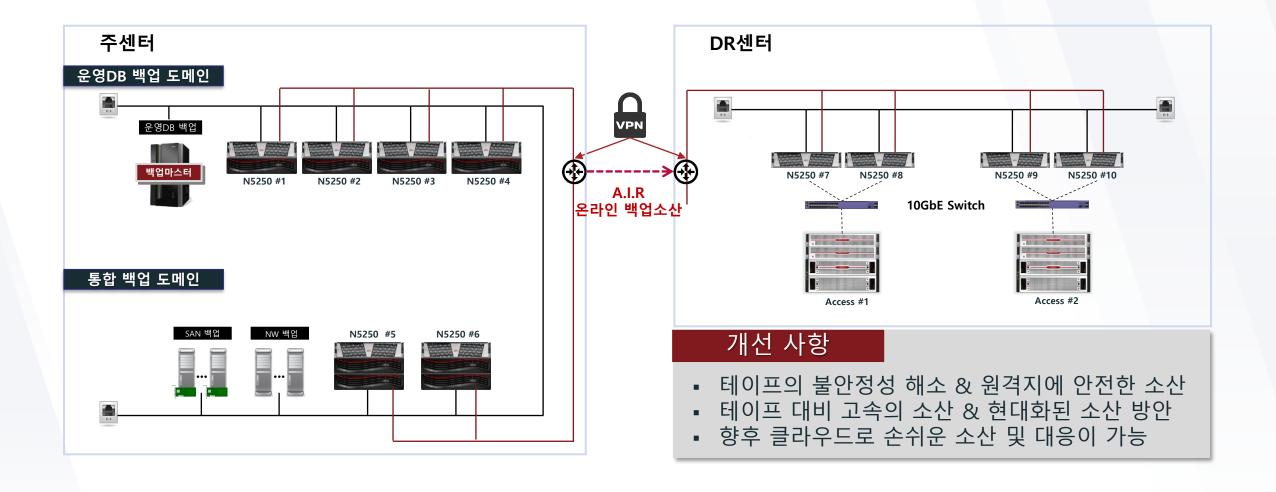
클린한 데이터 보장을 위해 복원전 스캔

NetBackup Appliance의 보안 백업

일반백업

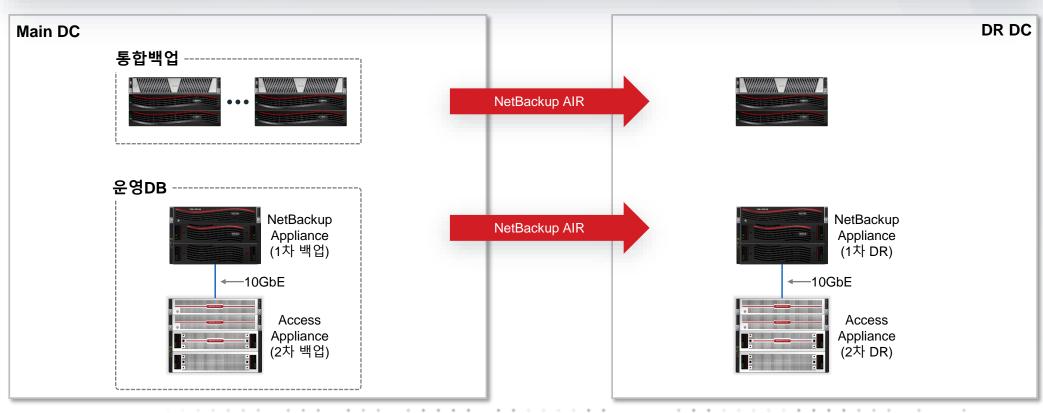
(일반 어플라이언스)

- 운영체제, 백업 S/W
- 서버, 스토리지
- 중복제거, 자동복제
- 클라우드 통합
- 튜닝 및 최적화


보안백업

(보안 어플라이언스)

- NIST 가이드에 기반한 경화
- RHEL을 위한 보안기술 구현 가이드 (STIG)
- 침입탐지(IPS) 및 방지(IDS) 기능 내장
- 암호화된 중복제거 저장소
- 역할기반 액세스 제어


국내 금융 고객사 사례

국내 은행 사례

- 기존 NetBackup Appliance와 Tape Library 조합 환경
- Tape Library의 증설을 최소화 하고 Access Appliance의 도입하여 Tape 비중 최소화
- 주센터 DR센터에 각각 Access Appliance를 배치하여 장기보관 요건 충족

Positioning Veritas Storage Options

Private Cloud

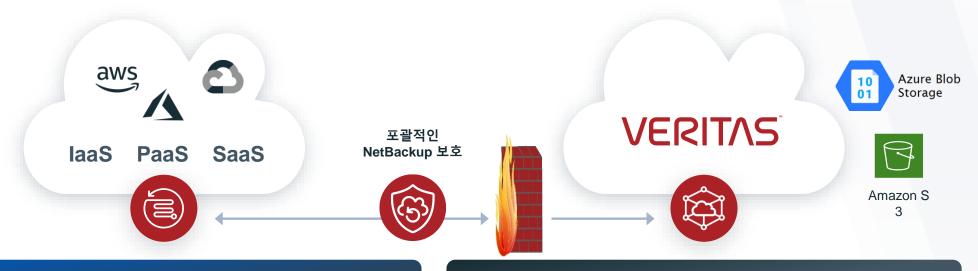
NetBackup Appliance

• 빠른 복구, 온프레미스에서 30~90일 보관

Storage-as-a-Service

Long-Term Retention

Access Appliance


- 고객이 관리
- 비용 효율적 디스크 기반 LTR (Tapeless)

NetBackup Recovery Vault

- Storage-as-a-service
- Subscription 기반
- 클라우드에 대한 Veritas 경험
- Air Gapped
- 제약 없이 확장

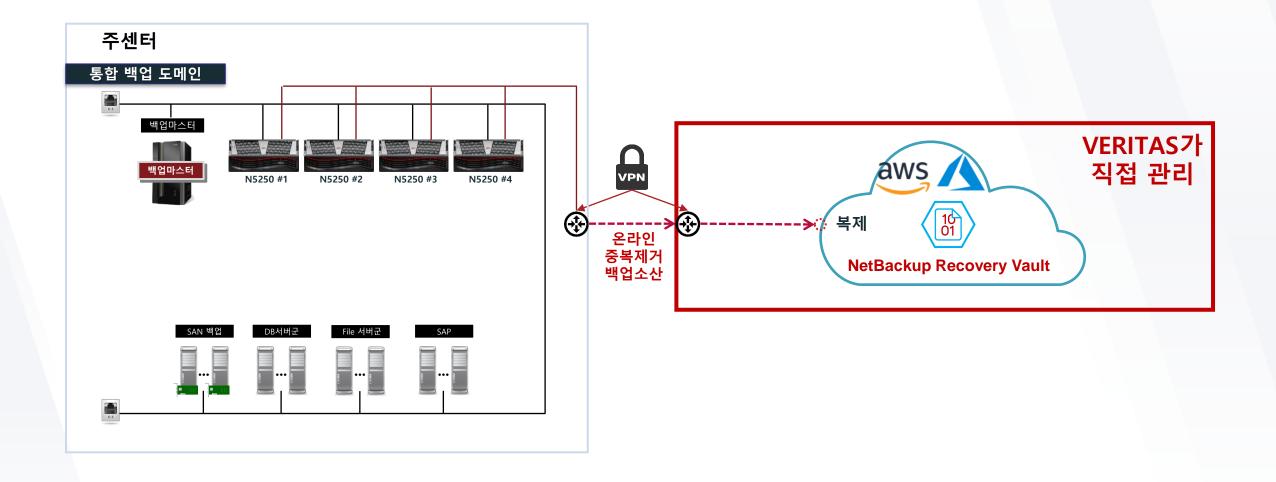
온프레미스 데이터 클라우드로 소산 - Recovery Vault?

온프레미스 데이터 센터 또는 모든 클라우드 데이터

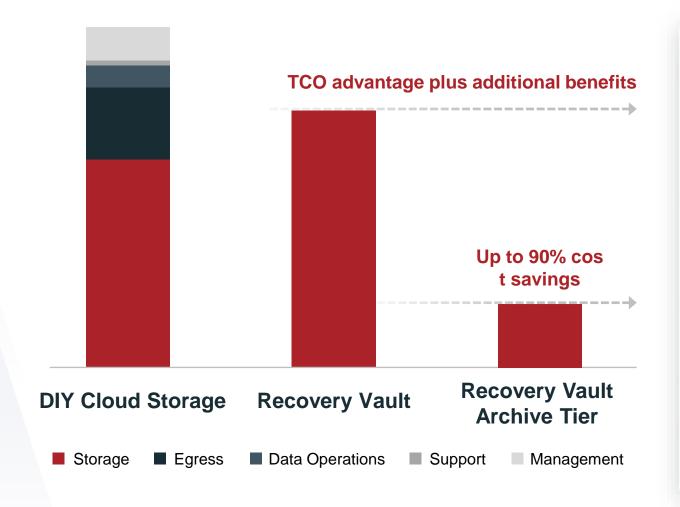
- 주센터의 데이터를 NetBackup을 통해 안전하게 보호
 - 온프레미스 또는 클라우드의 데이터가 모두 가능
 - 중복제거 기반으로 1차 백업 받은 데이터

NetBackup Recovery Vault

- Air-Gap 랜섬웨어 보호 / Immutable Cloud Storage
- 클라우드 또는 데이터 센터로 복구
- 제약 없는 확장성
- VERITAS에서 직접 관리 (별도인력 불필요)
- 예측 가능한 비용 구조 (Zero Hidden Costs)


Recovery Vault?

- 물리적 인프라 운영에 대한 부담 감소
- Green IT(탄소 절감) 운영 정책 부합



Recovery Vault 사용 사례

비용 효율적인 Recovery Vault?

- 아래 제품을 위한 경제적인 장기 데이터 보존 방안 제공
 - 1. NetBackup (On Promise)
 - 2. Alta Data Protection (Public Cloud)
- Back End Storage 선택 가능
 - 1. Azure Archive
 - 2. AWS Glacier Deep Archive
- 고객 및 비즈니스 요구사항에 맞는 복구 시간 및 비용 구조 선택
- 필요에 따라 스토리지 계층 Mix and Match
- Alta Recovery Vault는 DIY Storage 대비 최대 90% 절감 효과를 제공

간편한 계약 및 계약 갱신 프로세스

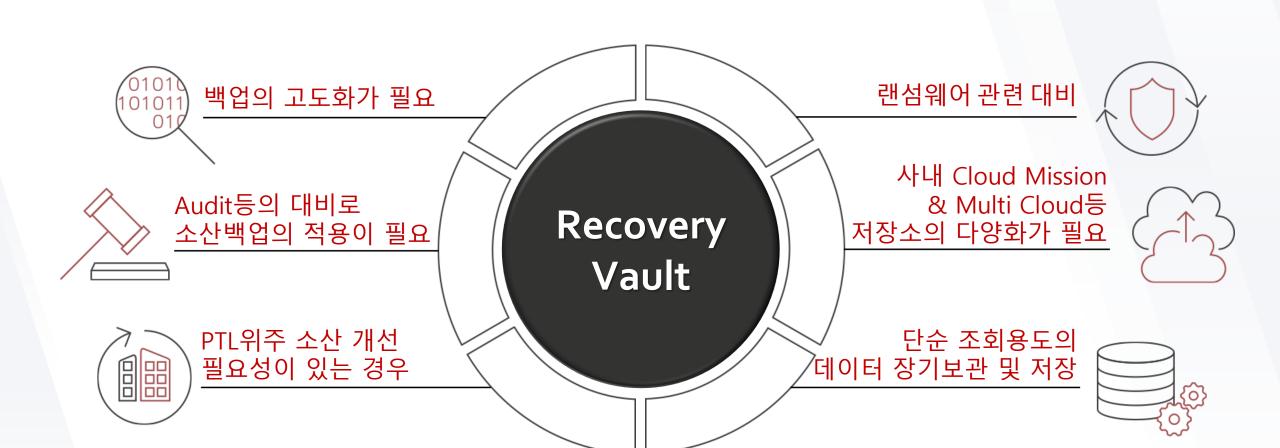
30일/10TB 평가판

직접 또는 채널 파트너를 통해계약

계약 증서 발급

보안 자격 증명 제공, NBU 9.0 또는 9.1로 업데이트

NBU UI에서 버킷 생성



월 단위 사용량 리포트

사용 기간 종료 시 자동 갱신

Use Cases

AWS내부 서버의 백업 구성도 (+소산 추가 제언)

	[1안] 백업서버간 소산	[2안] RV만 연결하여 소산	
소산 Path	주센터 NBA 5250 → EC2 백업서버 → Recovery Vault	주센터 NBA 5250 → Recovery Vault	AWS Seoul Region
비용관련	1. AWS to 주센터 복구시 비용 발생 2. 주센터 소산 필요 데이터 선정 및 사이징 필요	 AWS to 주센터 복구시 적은 비용 주센터 소산 필요 데이터 선정 및 사이징 필요 	VPC
특장점	AWS내에 백업서버가 존재하여 주센 터, DR센터 장애 시에도 유연한 대응 가능	저장소만 존재하기 때문에 주센터, DR센터 장애 시 빠른 대응이 힘든 부분 고려 필요	Availability Zone
₩	주센터	추가 제인 [1만 백업서버건	
	기타 서버군 DB서버군 File 서버군	추가 제언 [2안 RV만 연결	백업 제언 사항

VERITAS의 데이터 보호 솔루션

NetBackup & **NetBackup Appliance**

- 올인원 백업장치 (백업서버+백업S/W+VTL)
- 고속의 백업성능
- 중복제거 데이터 스토리지

Access Appliance

- 비용 최적화, 중복제거 데이 터 스토리지
- 장기보관에 최적화
- Tape 대체 및 불편함 해소

NetBackup Recovery Vault

- 비용 최적화, 중복제거 데이 터 스토리지
- 클라우드 기반 장기 보존
- Hidden cost 없는 간단한 라 이선스 방식

